Chapter 11

Reynolds-Stress and Related
Models

11.1 Introduction

Reynolds-Stress Closure. In Reynolds-stress models, modelled transport
equations are solved for the individual Reynolds stresses (u;u;) and for the
dissipation ¢ (or for another quantity, e.g., w, that provides a length or time
scale of the turbulence). Consequently, the turbulent viscosity hypothesis is
not needed; and so one of the major defects of the models described in the

previous Chapter is eliminated.
The exact transport equation for the Reynolds stresses is obtained from
the Navier-Stokes equations in Exercises 7.23-7.25 on pages 327-327: it is
D2t<uzuj> + aikakij = Pij + Ri]' — €ij- (11.1)

In a Reynolds-stress model, the “knowns” are (U), (p), (u;u;) and e. Thus in
Eq. (11.1) both the mean-flow convection, D(u;u;)/Dt, and the production
tensor, P;; (Eq. 7.179), are in closed form. But models are required for
the dissipation tensor ¢;; (Eq. 7.181), the pressure rate-of-strain tensor R;;

(Eq. 7.187), and the Reynolds-stress flux T};; (Eq. 7.195).

Outline of the Chapter. By far the most important quantity to be mod-
elled is the pressure rate-of-strain, R;;. This term is considered extensively
in the next four Sections in the context of homogeneous turbulence. This
includes (in Section 11.4) a description of Rapid Distortion Theory (RDT),
which applies to a limiting case, and which provides useful insights. The
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extension to inhomogeneous flows is described in Section 11.6, and spe-
cial near-wall treatments—both for k-¢ and Reynolds-stress models—are
described in Section 11.7. There is a vast literature on Reynolds-stress
models, with many different proposals and variants: the emphasis here is on
the fundamental concepts and approaches.

In Reynolds-stress models, R;; is modelled as a local function of (u;u;),
e and 9(U;)/0z;. Elliptic relaxation models (Section 11.8) provide a higher
level of closure and thereby allow the model for R;; to be non-local.

Algebraic stress models and nonlinear turbulent viscosity models are
described in Section 11.9. These are simpler models that can be derived
from Reynolds-stress closures. The Chapter concludes with an appraisal of
the relative merits of the range of models described.

Dissipation. The dissipation is treated summarily here. For high Reynolds
number flows, a consequence of local isotropy is'

€ij = %8(51']'. (11.2)

This is taken as the model for g;;. For moderate Reynolds-number flows,
this isotropic relation may not be completely accurate (see, e.g., Fig. 7.39 on
page 326). But to an extent this is of no consequence because the anisotropic
component (i.e., g;; — %851']') has the same mathematical properties as R;j,
and so can be absorbed into the model for R;;. As discussed in Section
11.7, close to walls the dissipation is anisotropic, and different models are
appropriate.

Reynolds Number. Most Reynolds-stress models contain no Reynolds-
number dependence (except for near-wall treatments), and therefore they
implicitly assume that the terms being modelled are independent of Reynolds
number. For simplicity of exposition, we follow this expedient assumption.
But it is good to remember that, in moderate Reynolds number experiments,
and especially in DNS, there can be (usually modest) Reynolds-number ef-
fects.

11.2 Pressure—Rate-of-Strain

The fluctuating pressure appears in the Reynolds-stress equation (Eq. 7.178)
most directly as the velocity-pressure-gradient tensor

'In this context it is not necessary to distinguish between the dissipation ¢ and the
pseudodissipation €.
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1 op’ ap’
M= - (w2, 2 11.
ij p <uZ or,; + u; oz, (11.3)

This can be decomposed (see Exercise 7.24 on page 327) into the pressure-
transport term —or>) [0z, Eq. (7.192), and the pressure-rate-of-strain R;;

kij
o p' [ Ou;  Ouj
Rij = <—p <amj + axi)>' (11.4)

The trace of R;; is zero (R;; = 2(p'V -u/p) = 0), and consequently the term
does not appear in the kinetic energy equation: it serves to redistribute
energy among the Reynolds stresses.

As observed by Lumley (1975), the decomposition of II;; into a redistri-
bution term and a transport term is not unique. For example, an alternative
decomposition is

0

I =Ry - 9, (3057), (11.5)

with
Rz(]a) =T11;; — £1u6;, (11.6)

and
T?) = (up')/p. (11.7)

The significance of T(®) is that the source of kinetic energy due to pressure

transport is

%H,-,- =-v.T®, (11.8)

In homogeneous turbulence the pressure transport is zero, and all redis-
tributive terms are equivalent (e.g., Il;; = R;; = RE;)) In examining such
flows (in this and the next three sections) we focus on the pressure-rate-
of-strain R;;. For inhomogeneous flows it is a matter of convenience which
decomposition to use; and in this case, as discussed (iI)l Section 11.6, there

a

are reasons to favor the decomposition in terms of Rz’j , Eq. (11.5).

Importance of Redistribution. It is worth recalling the behavior of II;;
in the turbulent boundary layer. In the budget for (u?) (Fig. 7.35 on page
324), II1; removes energy at about twice the rate of £11. These two sinks are
(approximately) balanced by the production Py;. In the budgets for (v?)
and (w?) (Figs. 7.36 and 7.37) there is no production, but Ty and TI33 are
sources that approximately balance £99 and e33. Thus energy is redistributed
from the largest normal stress (which has all of the energy production)
to the smaller normal stresses (which have no production). In the shear
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stress budget (Fig. 7.38 on page 325), the production P;s is approximately
balanced by —II;9, with the dissipation being small in comparison.

Evidently, along with production and dissipation, redistribution is a
dominant process in the balance of the Reynolds stresses. Consequently,
its modelling is crucial, and the subject of extensive research.

Poisson Equation for p’. Some insight into the pressure rate-of-strain can
be gained by examining the Poisson equation for pressure (see Section 2.5).
The Reynolds decomposition of this equation (performed in Exercise 11.1)
leads to a Poisson equation for p’ with two source terms:

. . 2
L L TR

(u,-uj — <u,u]>) (11.9)

Based on this equation, the fluctuating pressure field can be decomposed
into three contributions:

o= ™ 4 p®) 4 p®), (11.10)

The rapid pressure p(") satisfies

- = -2——— 11.11
pv P Ox; Oz; ( )
the slow pressure p'®) satisfies
1 0?
;VQP(S) = _axiaxj (ujuy — (uuyg)), (11.12)

and the harmonic contribution pMsatisfies Laplace’s equation V2p) = 0.
Boundary conditions are specified on p(h) dependent on those on p(’“) and
p(s> so that p’ satisfies the required boundary conditions.

The rapid pressure is so called because (unlike p(s)) it responds immedi-
ately to a change in the mean velocity gradients. Also, in the rapid-distortion
limit (i.e., Sk/e — 00), the rapid pressure field p(") has a leading-order effect,
whereas p(®) is negligible (Section 11.4).

Corresponding to p(). p) and p") the pressure rate-of-strain can also

be decomposed into three contributions, RZ(;), RZ(-JS»), Rg-l), with obvious def-

(r) — p” [ oui Uj 11.1
R = (20 (Su 5u)), (11.13)

initions, e.g.,
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As shown in the seminal work of Chou (1945), the Green’s function solu-
tion to the Poisson equation (Eq. 2.48) can be used to express the pressure—
rate-of-strain in terms of two-point velocity correlations. For example, in
homogeneous turbulence, one contribution to RZ(;) is

(") oy,
<p a“’>:28<U’“>M,-gjk, (11.14)

p Ox;j Oxy

where the fourth-order tensor M is given by an integral of the two-point
velocity correlation R;;(r) = (u;(x)u;(x +r)):

11 PRy
47 |I‘| a’l“ja’l“k ’

Mgk = — (11.15)
(see Exercise 11.2).

The valuable conclusions from these considerations are that there are
three qualitatively different contributions to R;;. The rapid pressure in-

volves the mean velocity gradients, and in homogeneous turbulence Rg) is
directly proportional to (Uy)/0z, (Eq. 11.14). The slow pressure—rate-of-

strain Rl(;) can be expected to be significant in most circumstances (except
rapid distortion); and indeed, in decaying homogeneous anisotropic turbu-

(5)
ij
harmonic component RE? is zero in homogeneous turbulence, and is impor-
tant only near walls: it is discussed in Section 11.7.5.

lence, R:.’ is the only one of the three contributions that is non-zero. The

Exercise 11.1 Show that the Poisson equation for pressure (Eq. 2.42)
can alternatively be written

1 oU; oU; 0*UU;
-Vp=—-— = 11.16
Hence show that the mean pressure satisfies
1 oU) o{U;)  0%(uzuy)
-V%(p) = — L L 11.17
p (p) dz; Om; z;0z; ’ ( )

and that the fluctuation pressure satisfies Eq. (11.9).

Exercise 11.2 Consider homogeneous turbulence (in which the mean
velocity gradient 9(Uy)/0x, is uniform). From Eqgs. (2.48) and (11.11),
show that the correlation at x between the rapid pressure and a random
field ¢(x) is given by
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1 ™) () ()} — 1 9(Us) <3ug > dy
p<p ()¢ (x) T 21 dxy /// Oyx |x —y|’ (11.18)

where integration is over all y. Comment on the behavior of the two-
point correlation necessary for the integral to converge. Show that a

contribution to RE;) is

") Qu, 1 9(Uy) d
p U k y
- — (111
< P (‘9.rj> 21 Oy /// arjayk (Y)>|X—Y| (1L.19)

With the separation vector defined by r = y — x, show that this equa-
tion can be rewritten in terms of the two-point velocity correlation
Ri;(r) = (us(x)uj(x +r)) as

(") Hu, 1 62R
p Ui \
< ’ axj>‘ on 3$z / / / 2] Bryare O (11:20)

Hence verify Eq. (11.14).

11.3 Return-to-Isotropy Models

11.3.1 Rotta’s Model

The simplest situation in which to examine the slow pressure-rate-of-strain
is decaying homogeneous anisotropic turbulence. In this case, there is no
production or transport, and R( ") and ’R( ) are zero, so that the exact
Reynolds-stress equation is

d
a(%‘“j) = RZ(;) — Eij.- (11.21)
Since the trace of ’Rl(;) is zero, the term has no effect on the turbulent

kinetic energy. Its effect is on the distribution of energy among the Reynolds
stresses, which can be examined through the normalized anisotropy tensor

b = \wits) Lg, — %, (11.22)

Taking e;; to be isotropic (Eq. 11.2), the evolution equation for b;; is
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()
S ARl (11.23)

(see Exercise 11.3).

It is natural to suppose that the turbulence has a tendency to become less
anisotropic as it decays, and indeed such a tendency to return to isotropy
is evident in Fig. 10.2 on page 372. Based on this notion, Rotta (1951)
proposed the model

£
REJS) == _CRE ((uzuﬁ - §k6”>
—ZCREbij, (11.24)

where Cr is the “Rotta constant.” Substituting this into Eq. (11.23) yields

dbij N € B
dt - _(CR - 1)k;bijv (1125)

showing that Rotta’s model corresponds to a linear return to isotropy. Ev-
idently a value of C'r greater than unity is required.

Exercise 11.3 From the definition of b;; (Eq. 11.22) and from the
Reynolds-stress evolution equation (Eq. 11.21), show that in decaying
turbulence the exact equation for b;; is

(s)
dbij _ £ (bij + L+ 15@7‘ - 6”) : (11.26)

dt & 2 3 2

Hence show that Eq. (11.23) follows from the assumed isotropy of &;;.

Show that if instead ¢;; is taken to be proportional to (u;u;), then the
resulting equation for b;; is

(s)
dbij . Rij
& - ok (11.27)

Show that if Rotta’s model is used in this equation, the result is the
same as Eq. (11.25) but with Cg in place of (Cr — 1).




